Monatshefte für Chemie Chemical Monthly © Springer-Verlag 1999 Printed in Austria

Backbone Stabilized Peptidomimetics Containing Statine-Like Structural Elements: Diastereospecific Synthesis of Trisubstituted Cyclic Ureas and 1,4-Diazepan-2-ones

Dieter Scholz*, Peter Hecht[#], Hannelore Schmidt, and Andreas Billich

Novartis Research Institute, Department of Immunodermatology, A-1230 Vienna, Austria

Summary. 2-Aminobenzyl substituted 4-amino-3-hydroxy-5-phenyl pentanoic acid (*AHPPA*) is the central structural element of highly active *HIV*-protease inhibitors. To obtain conformationally less flexible statine analogs, we stabilized *AHPPA via* ring formations, *e.g.* by reaction with 1,1'-carbonyl diimidazole to give six-membered ureas. Reaction of *AHPPA* with chloroacetyl chloride leads to 1,4-diazepan-2-ones, whereas *BOC* protected *AHPPA* is transformed in a two step sequence to 7(*S*)-benzyl-6-chloro-4-(4-methoxybenzyl)-2-oxo-[1,4]-diazepane-5(*S*)-carboxylic acid ethylester, likely assisted by transannular influence of N-4. *TBDMS* protection strategy allows the cyclization of 2-aminobenzyl substituted 4-amino-3-hydroxy-5-phenylpentanal to 7(*R*)-benzyl-6(*S*)-hydroxy-5(*R*)-hydromethyl-4-(4-methoxybenzyl)-(1,4)-diazepan-2-one and 4(R)-benzyl-5(*S*)-hydroxy-6(*R*)-hydroxy-5(*R*)-hydroxy-4-(4-methoxybenzyl)-tetrahydro-pyrimidino-2-one. In this way, backbone stabilized peptidomimetics containing statine-like structural elements are obtained. 3(R)-(7(R)-Benzyl-6(*S*)-hydroxy-4-(4-methoxybenzyl)-2-oxo-[1,4]-diazepan-5-yl)-acrylic acid ethylester showed the highest activity against *HIV*-protease in this series with a *Ki* value of about 600 n*M*.

Keywords. Diastereospecificity; HIV-Protease; Peptidomimetica; Statine.

Stabilisierte Peptidomimetika mit statinanalogen Strukturelementen: Diastereospezifische Synthese von trisubstituierten zyklischen Harnstoffen und 1,4-Diazepan-2-onen

Zusammenfassung. 2-Aminobenzylsubstituierte 4-Amino-3-hydroxy-5-phenyl-pentansäure (*AHPPA*) bildet das zentrale strukturelle Element von hochaktiven *HIV*-Proteaseinhibitoren. Um Derivate mit reduzierter konformeller Flexibilität, zu erhalten, stabilisierten wir *AHPPA* durch Ringbildung wie folgt: *AHPPA* wird mit 1,1'-Carbonyldiimidazol zu sechsgliedrigen Harnstoffen zyklisiert. Umsatz von *AHPPA* mit Chloracetylchlorid ergibt 1,4-Diazepan-2-on, wohingegen *BOC*-geschütztes *AHPPA* in einem Zweistufenprozess zu 7(*S*)-Benzyl-6-chloro-4-(4-methoxybenzyl)-2-oxo-[1,4]-diazepane-5(*S*)-carbonsäureethylester führt, wahrscheinlich durch transanulare Einflüsse des Stickstoffs in Position 4 begünstigt. *TBDMS*-Schutzgruppenstrategie erlaubt die Zyklisierung von Aminobenzylsubstituiertem 4-Amino-3-hydroxy-5-phenylpentanal zu 7(*R*)-Benzyl-6(*S*)-hydroxy-5(*R*)-hydroxymethyl-4-(4-methoxybenzyl)-(1,4)-diazepan-2-on und 4(*R*)-Benzyl-5(*S*)-

^{*} Corresponding author

[#] Present address: TRIPOS Associates GmbH, D-81829 Munich, Germany

hydroxy-6(R)-hydroxymethyl-1-(4-methoxybenzyl)-tetrahydro-pyrimidino-2-on. 3(R)-(7(R)-Benzyl-6(S)-hydroxy-4-(4-methoxybenzyl)-2-oxo-[1,4]-diazepan-5-yl)-acrylsäureethylester zeigte in dieser Serie mit einem *Ki*-Wert von etwa 600n*M* die beste Wirksamkeit gegen *HIV*-Protease.

Introduction

HIV Protease, which is responsible for the maturation of infectious viral particles, proved to be an effective target to intervene viral replication in man, especially in combination therapies with reverse transcriptase inhibitors [1]. The chemotherapeutic treatment of AIDS has recently reached a milestone with the approval of Saquinavir (Roche), Indinavir (Merck) and Ritonavir (Abbott) by the FDA [2a, b]. These inhibitors are advanced open chain peptidomimetica containing transition state analogs located at the dipeptide cleavage site. Due to the seemingly limitless capacity of the AIDS retrovirus to develop drug resistance and the side effects of the above mentioned inhibitors due to drug-drug interactions [3] there still remains need to develop structurally unrelated orally available potent inhibitors of *HIV*-protease. Seven-membered cyclic and azacyclic ureas are such a highly promising class of inhibitors [4a, b], but there are still problems to obtain the necessary oral bioavailability profile [4b].

Work of our group has led to the synthesis of an open-chain peptidomimetic *HIV*-protease inhibitor containing 2-aminobenzyl-substituted 4-amino-3-hydroxy-5-phenylpentanoic acid (*AHPPA*; 1) as inhibitor core displaying high antiviral activity and oral bioavailability and a good pharmacokinetic profile [5]. Molecular modeling docking studies indicated that 1, cyclized *via* its two nitrogen atoms in positions 2 and 4 to ureas (3) or 1,4-diazepanones (4, 5, Fig. 1), should fit nicely into the active site of the *HIV*-protease. These compound classes are related to the

Fig. 1. Potential HIV-protease inhibitors

Statine-Related Peptidomimetics

cyclic ureas 2 of the Dupont group [4]; however, they are, due to the substitution pattern and the positioning of the carbonyl groups, distinctively different (see Fig. 1). Therefore, we decided to synthesize these compounds starting from L- and D-phenylalaninal, because at that time it was not obvious from our modeling result which one would fit better into the active site of the *HIV*-protease. In addition, the substitution pattern of the heterocycles allows to develop these compounds further on into backbone stabilized peptidomimetica containing a statine-like structural element [6a, b].

Results and Discussion

L-Series: 1,4-Diazepan-2-ones

Compound $\mathbf{6}$, which is easily obtainable from *BOC*-protected phenylalaninal by a Wittig reaction, epoxidation, and diastereoselecive epoxid opening [7], reacts with chloroacetyl chloride to give $\mathbf{8}$ which after deprotection with trifluoroacetic acid and neutralization with NaHCO₃ cyclized to 9, accompanied by an additional nucleophilic substitution of the 6-OH group by Cl (Scheme 1). In an attempt to acetylate the basic nitrogen, only the O-acetylated product 10 was obtained, indicating a transannular influence of N-4 at position 6. This can be hypothesized to occur via an aziridine intermediate. Saponification of 9 with LiOH led to the 6-chloro acid 11 in good yield. Treatment of 6 with HCl/Et₂O (cleavage of the BOC-group) and afterwards with t-butyldimethylsilylchloride (TBDMSCl)/imidazole (protection of the 6-hydroxy group) prior to cyclization with chloroacetylchloride gave 12 after deprotection. Due to the reduced basicity of the now amidic nitrogen, no additional substitution of 6-OH takes place. This reaction sequence has to be performed rather quickly; otherwise, intramolecular lactonization to 13 takes place (Scheme 1). All attempts to alkylate N2 of 12 to enhance the inhibitory activity by placing additional residues in the P2 side of the enzyme were unsuccessful.

L-Series: Six-membered cyclic ureas

Reaction of *TBDMS* protected **7** with 1,1'-carbonyl diimidazole (*Staab* reagent) gave **14** (Scheme 2). **14** can be *N*-alkylated with allyl and benzyl bromides (**15**, **21**), but not with halogenides such as 1-iodobutane or 2-chloro-(4-methoxyphenyl)-ethane. In both cases, prolonged reaction times led only to transesterification (**19a**, **b**), probably *via* intermediate nucleophilic substitution of the halide to the corresponding alcohol (Scheme 3). Reduction of **15** with NaBH₄/LiCl and deprotection gave **18**.

D-series: 1,4-Diazepan-2-ones

Due to the unsatisfactory results with simple esters and the side reactions leading to five-membered lactones we decided to reduce ester 23 to alcohol 24 prior to cyclization (Scheme 4). 23 is obtained analogously to 6 using *D*-phenylalanine as starting material. Removal of the *BOC*-group, protection of the two hydroxyl groups with *TBDMS*, and reaction with chloroacetylchloride gave 26. Selective

deprotection results in 27 which was transformed further in a one-pot reaction to 33. Standard deprotection conditions gave 28.

D-series: Six-membered cyclic ureas

The same deprotection-protection sequence as above was applied to 24, and cyclization with 1,1'-carbonyl diimidazole (*Staab* reagent) gave 29 which can be deprotected selectively to 30 and 31 (Scheme 4). 29 was alkylated to 34 (Scheme 5); selective deprotection gave 35 which was transformed to 36 using the one-pot procedure oxidation/*Wittig* reaction [7]. Deprotection with fluoride ion gave 37. As shown in Scheme 6, 36 reacts with H_2/O_2 /benzonitrile diastereospecifically to 38 (performed with the hope to create a suicide inhibitor). Saponification of 37 with LiOH leads to 39 which offers additional possibilities for amide and ester formation using classical acid activation conditions (N-ethyl-N'-(3-dimethyla-

Scheme 2

mino)-propyl)-carbodiimide hydrochloride, the water soluble carbodiimide). **39** contains a vinylogous statine-like element.

Biological test results

All compounds were tested in an enzymatic assay using *HIV*-1 protease as described in Res. [7]. **33** showed a *Ki* value of 616 n*M* and **28** a *Ki* of 923 n*M*; all other compounds were inactive up to a concentration of 12.5 μ *M*. None of them showed any activity in an assay measuring the *HIV*-1 IIIB induced cytopathic effect in MT4 cells [7] up to a concentration of 3 μ *M*.

Conclusions

The data demonstrate that cyclic *AHPPA* analogs are clearly less active than their open chain counterparts. This may be due to their unsymmetrical characteristics, which seems to be much more important in these cases than with open chain inhibitors. Their rigid structure does not allow even small conformational changes for optimal interactions with the P1 and P2 pocket of the enzyme. Therefore, small misfits have a much bigger influence on the activity than in the case of the open chain analogs. Similar results were observed in an attempt to alter the symmetry of cyclic ureas [4b]. On the other hand, expedient flexible reaction sequences were developed which led to conformationally rigidified peptidomimetics containing

statine-like structural elements. Due to the flexibility in the substitution pattern and the highly diastereospecific reactions, they might be useful building blocks for inhibitors of other aspartic proteases.

Experimental

General

¹H NMR spectra were recorded on Bruker WC-250 or AMX-500 spectrometers; chemical shifts are reported in ppm (δ) relative to internal *TMS*. Elemental analysis were performed by the Analytical Department of Novartis, Basle, Switzerland. Their results are in satisfactory agreement with the calculated values. Analytical thin-layer chromatography was performed on silica gel 60 F₂₅₄ glass plates (HPTLC, Merck). Preparative column chromatography was performed on silica gel (40–63 µm) under pressure (\approx 0.2 mPa). Solvents were AR grade and were used without further purification. All reagents were obtained from commercial suppliers and were used without further purification. Evaporations were carried out *in vacuo* with a rotary evaporator. Melting points were determined with a thermovar apparatus (Reichert-Jung) and are not corrected.

1289

Scheme 5

General procedure for the cleavage of the dimethyl t-butyl silyl protecting group

The dimethyl *t*-butyl silyl protected compound (*e.g.* **19a**) (0.3 mmol) was dissolved in 5 cm^3 acetonitrile. Then, 1 cm^3 (20 mmol) 40% HF was added, and the solution was stirred at room temperature until all starting material was consumed (2–10 d). Subsequently, 400 mm³ methanol were added, the reaction solution was diluted with CH₂Cl₂, washed with H₂O, dried, the solvent evaporated, and the residue chromatographed on silica gel.

4(S)-Amino-3(S)-hydroxy-2(R)-(4-methoxybenzylamino)-5-phenyl-pentanoic acid ethylester dihydrochloride (7; $C_{21}H_{20}N_2O_4Cl_2$)

To a solution of 2 g (4.23 mmol) **6** [7] in 20 cm³ of CH₂Cl₂, 4.23 cm³ (12.69 mmol) 3 *N* HCl were added, and the reaction mixture stirred at room temperature for 1 h. Evaporation of the solvent gave 1.84 g of **7** (97%).

Colorless crystals; m.p.: 118–121°C; ¹H NMR (CD₃OD, δ , 250 MHz): 1.37 (s, 2H, CH₂CH₃), 3.07 (ABX, 2H, CH₂C₆H₅), 3.80 (s, 3H, OCH₃), 3.79–3.84 (m, 1H, NH₂CH), 4.21 (AB, NHCH₂), 4.35 (q, 2H, OCH₂), 4.22–4.41 (m, 2H, CHNH, CHOH), 7.01 (d, 2H, aromatic H), 7.23–7.58 (m, 7H, aromatic H) ppm; MS (ESI): m/z = 373.5 [MH⁺].

(N-4(S)-((t-Butoxycarbonyl)amino)-3(S)-hydroxy-2(R)-((N-4-methoxybenzyl-N-chloroacetyl)-amino-5-phenyl)-heptanoic acid ethylester (**8**; C₂₈H₃₇ClN₂O₇)

To a solution of 236 mg (0.5 mmol) of **6** [7] in 10 cm³ CH₂Cl₂, 210 mg (2.5 mmol) solid NaHCO₃ were added and subsequently at 0°C 48 mm³ (0.6 mmol) chloroacetyl chloride dissolved in 0.2 cm³ of CH₂Cl₂. The reaction mixture was stirred for 2 h at room temperature and then extracted with H₂O, dried, and evaporated. Chromatographic separation of the residue (silica gel, toluene/ethyl acetate = 4/1) gave 239 mg (87%) of **8**.

White foam; ¹H NMR (CDCl₃, δ , 500 MHz): 1.18 (t, 3H, OCH₂CH₃), 1.34 (s, rotamer 22%, C(CH₃)₃), 1.41 (s, rotamer 78%, C(CH₃)₃), 2.90 (ABX, 2H, CH₂C₆H₅), 3.63 (d, 1H, CHCOO), 3.81 (s, 3H, OCH₃), 3.87 (q, 1H, NHC*H*), 4.04 (q, 2H, OCH₂), 4.05 (s, 2H, CH₂Cl), 4.31 (1/2AB, 1H, NCH₂C₆H₄), 4.38 (s, 1H, OH), 4.42 (d, 1H, CHOH), 4.81 (1/2AB, 1H, NCH₂C₆H₄), 5.03 (bd, rotamer 22%, NH), 5.17 (bd, rotamer 78%, NH), 6.83 (d, 2H, aromatic H), 7.15–7.30 (7H, aromatic H) ppm; MS (FAB): m/z = 549 [MH⁺].

7(S)-Benzyl-6-chloro-4-(4-methoxybenzyl)-2-oxo-1,4-diazepane-5(S)-carboxylic acid ethylester (9; $C_{23}H_{27}ClN_2O_4$)

129 mg (0.23 mmol) of **8** were dissolved in 2 cm^3 of CH₂Cl₂, 230 mm³ trifluoroacetic acid were added, and after standing for 3 h at room temperature the solvent was evaporated. The residue was dissolved in 25 cm³ *THF*, 300 mg (3 mmol) solid NaHCO₃ were added, and the reaction mixture was stirred 4 h at room temperature. Filtration, evaporation of the solvent, and chromatography of the residue (silica gel, ethyl acetate/methanol = 95/5) gave 84 mg (86%) of **9**.

M.p.: 48–52°C (amorphous); ¹H NMR (*DMSO*-d₆/310°K, δ , 500 MHz): 1.04 (t, 3H, OCH₂CH₃), 3.01 (ABX, 2H, CH₂C₆H₅), 3.20–3.31 (m, 1H, NHC*H*), 3.71–3.74 (m, 1H, CHCl), 3.73 (s, 3H, OCH₃), 3.81 (s, 1H, CHCOO), 2.89–4.07 (m, 2H, OCH₂), 4.26 (AB, 2H, CH₂CO), 4.35 (1/2AB, 1H, NCH₂C₆H₄), 4.75 (1/2AB, 1H, NCH₂C₆H₄), 5.36 (bd, 1H, NH), 6.88 (d, 2H, aromatic H), 7.17–7.38 (m, 7H, aromatic H) ppm; MS (FAB): m/z = 431 [MH⁺].

6-O-Acetyl-5(S)-benzyl-7(R)-carboxyethyl-1-(4-methoxybenzyl)-2-oxo-1,4-diazacycloheptan (10; $C_{25}H_{30}N_2O_6$)

100 mg (0.23 mmol) **9** were dissolved in 2 cm³ CH₂Cl₂; 29 mm³ (0.26 mmol) N-methylmorpholine, 23 mm³ (0.24 mmol) acetic anhydride, and 10 mg dimethylaminopyridine were added at 0°C, and the reaction mixture was stirred for 1 h. Dilution with 20 cm³ CH₂Cl₂, extraction with H₂O, drying evaporation of the solvent, and chromatographic separation of the residue (silica gel, toluene/ethyl acetate = 1/1) afforded 101 mg (92%) **10**.

Colorless syrup; ¹H NMR (CDCl₃, δ , 500 MHz): 1.08 (t, 3H, OCH₂CH₃), 2.05 (s, 3H, COCH₃), 2.97 (ABX, 2H, CH₂C₆H₅), 3.57–3.64 (m, 1H, NHC*H*), 3.81 (s, 3H, OCH₃), 3.93 (d, 1H, CHCOO), 4.00–4.21 (m, 2H, OCH₂), 4.23 (1/2AB, 1H, NCHC₆H₄), 4.28 (s, 2H, NCH₂CO), 4.97 (t, 1H, CHOCOCH₃), 5.00 (1/2AB, 1H, NCHC₆H₄), 6.81–6.87 (m, 2H, aromatic H), 7.17–7.39 (m, 7H, aromatic H) ppm; MS(FAB): m/z = 455 [MH⁺].

7(S)-Benzyl-6-chloro-4-(4-methoxybenzyl)-2-oxo-1,4-diazepane-5(S)-carboxylic acid (11; $C_{21}H_{23}N_2O_4Cl$)

50 mg (0.12 mmol) of **9** were dissolved in 3 cm³ of ethanol, and 3 mg (0.132 mmol) LiOH dissolved in 1 cm³ H₂O were added. After the reaction mixture was stirred for 24 h at room temperature the solution was acidified (pH = 1–2) with 1 N HCl. 5 cm³ H₂O were added, and the volume of the solution was reduced under vacuum to 1/3. The precipitating white crystals were collected and dried yielding. 20 mg (44%) of **11**.

M.p.: 192–198°C; ¹H NMR (CDCl₃, δ , 500 MHz): 2.97 (ABX, 2H, CH₂C₆H₅), 3.67–3.73 (m, 1H, CHNH), 3.70 (s, 3H, OCH₃), 3.88 (d, 1H, CHCOO), 4.07 (t, 1H, CHCl), 4.40 (1/2AB, 1H, NHC*H*), 4.43 (AB, 2H, CH₂CO), 4.90 (1/2AB, 1H, NHC*H*), 6.85 (d, 2H, aromatic H), 7.15–7.29 (m, 7H, aromatic H) ppm; MS(FAB): m/z = 403 [MH⁺].

7(S)-Benzyl-6(S)-hydroxy-4-(4-methoxybenzyl)-2-oxo-1,4-diazepan-5(S)-carboxylic acid ethylester hydrochloride (**12**; C₂₂H₂₇N₂O₅)

444.6 mg (1 mmol) **7** were dissolved in $10 \text{ cm}^3 \text{ CH}_2\text{Cl}_2$; 280 mm^3 (2 mmol) triethylamine and afterwards 87 mm^3 (1.1 mmol) chloroacetylchloride and 308 mm^3 (2.2 mmol) triethylamine were added at 0°C. The reaction mixture was stirred for 30 min, washed twice with H₂O, dried, and the solvent was evaporated. After chromatography (silica gel, toluene/ethyl acetate = 1/1) the residue gave 115 mg (28%) **12** as a syrup.

¹H NMR (CD₃Cl, δ , 500 MHz): 1.29 (t, 3H, OCH₂CH₃), 2.87 (ABX, 2H, CH₂C₆H₅), 3.22 (d, 1H, CHCOO), 3.60 (AB, 2H, NCH₂CO), 3.75 (dd, 1H, CHOH), 3.79 (s, 3H, OCH₃), 3.92 (s, 2H, CHCOO), 3.60 (AB, 2H, NCH₂CO), 3.75 (dd, 1H, CHOH), 3.79 (s, 3H, OCH₃), 3.92 (s, 2H, CHCOO), 3.60 (AB, 2H, NCH₂CO), 3.75 (dd, 1H, CHOH), 3.79 (s, 3H, OCH₃), 3.92 (s, 2H, CHCOO), 3.60 (AB, 2H, NCH₂CO), 3.75 (dd, 1H, CHOH), 3.79 (s, 3H, OCH₃), 3.92 (s, 2H, CHCOO), 3.60 (AB, 2H, NCH₂CO), 3.75 (dd, 1H, CHOH), 3.79 (s, 3H, OCH₃), 3.92 (s, 2H, CHCOO), 3.60 (s, 2H, NCH₂CO), 3.75 (s, 2H, CHCOO), 3.60 (s, 2H, NCH₂CO), 3.75 (s, 2H, CHCOO), 3.75 (s, 2H, OCH₃), 3.92 (s, 2H, CHCOO), 3.60 (s, 2

 $NCH_2C_6H_4$), 4.18 (dq, 2H, OCH₂), 4.39 (dq, 1H, NCHCH₂), 6.82 (d, 2H, aromatic H), 6.95 (bd, 1H, NH), 7.18–7.37 (m, 7H, aromatic H) ppm; MS (FAB): m/z = 449 [MH⁺HCl].

5(S)-Benzyl-4(S)-hydroxy-3(R)-(4-methoxybenzyl)-pyrrolidine-2-one (13, C19H22N2O3)

891 mg (2 mmol) **7** (dihydrochloride) and 205 mg (3 mmol) imidazole were dissolved in 50 cm³ of CH₂Cl. The reaction mixture was stirred for 12 h at room temperature, the organic phase washed with $30 \text{ cm}^3 1 N$ HCl and H₂O, and dried. Chromatographic separation (silica gel, toluene/ethyl acetate 1/1) gave 532 mg **13**.

Amorphous powder; m.p.: 134–138°C; ¹H NMR (CD₃Cl, δ , 250 MHz): 2.87 (1/2ABX, 1H, $J_{12} = 13.6$ Hz, CHC₆H₅), 3.00 (1/2ABX, 1H, $J_{12} = 13.6$ Hz, CHC₆H₅), 3.38 (d,1H, J = 4.7 Hz, CHCO), 3.68–3.72 (m, 1H, CHNH), 3.74 (1/2AB, $J_{12} = 13.3$, NHCHC₆H₄), 3.80 (s, 3H, OCH₃), 3.87 (1/2AB, $J_{12} = 13.3$, NHCHC₆H₄), 3.97–3.99 (m, 1H, CHO), 5.54 (bs, 1H, OH), 6.88 (d, 2H, aromatic H), 7.19–7.38 (m, 7H, aromatic H) ppm; MS (FAB): m/z = 327 [MH⁺].

6(S)-Benzyl-5(S)-O-t-butyl-dimethylsilyl-3-(4-methoxybenzyl)-2-oxo-hexahydropyrimidine-4(S)-carboxylic acid ethylester (14; C₂₈H₄₀N₂O₅Si)

To a solution of 6.71 g (15.1 mmol) **7** in 130 cm³ of CH₂Cl₂, 3.08 g (45.3 mmol) imidazole and 4.55 g (30.2 mmol) *t*-butyldimethylsilyl-chloride (*TBDMS*Cl) were added. The reaction mixture was stirred at room temperature for 20 h, then washed twice with H₂O, dired, and filtered. Imidazole was added to the filtrate to obtain a *pH* of 7–8, followed by 3.84 g (15 mmol) of 1,1'-carbonyl diimidazole (*Staab* reagent). The reaction mixture was stirred for 1 h at room temperature, the solvent was evaporated, and the residue was chromatographed on silica gel (eluent: toluene/ethyl acetate = 3/1) giving 5.82 g (76%) of **14** as colorless syrup.

¹H NMR (CDCl₃, δ , 250 MHz): 0.18 (s, 3H, SiCH₃), 0.04 (s, 3H, SiCH₃), 0.85 (s, 9H, SiC(CH₃)₃), 1.25 (t, 3H, CH₂CH₃), 2.73 (ABX, 2H, C₆H₅CH₂), 3.58–3.62 (m, 1H, NHCHCH₂), 3.78 (s, 3H, OCH₃), 3.82 (1/2AB, 1H, NCHC₆H₄), 3.70 (d, 1H, NCHCOO), 4.10–4.11 (m, 1H, CHOSi), 4.15–4.21 (m, 2H, OCH₂), 5.15 (1/2AB, 1H, NCHC₆H₄), 6.83 (d, 2H, aromatic H), 7.14–7.18 (m, 2H, aromatic H), 7.21 (d, 2H, aromatic H), 7.24–7.29 (m, 1H, aromatic H), 7.30–7.34 (m, 2H, aromatic H) ppm; MS (FAB): m/z = 513 [MH⁺].

$\label{eq:l-Allyl-6} I-Allyl-6(S)-benzyl-5(R)-O-t-butyldimethylsilyl-3-(4-methoxybenzyl)-2-oxo-hexahydropyrimidine-4(S)-carboxylic acid ethylester (15; C_{31}H_{44}N_2O_5Si)$

256 mg (0.5 mmol) **14** were dissolved in 1 cm³ *DMF* and added to 24 mg (1 mmol) NaH suspended in 1 cm³ *DMF*. After 5 min, 85 mm³ (1 mmol) allyl bromide were added at 0°C. The reaction mixture was stirred for 40 min at room temperature; then, acetic acid was added (*pH* adjusted to 4–5), and the mixture was diluted with CH₂Cl₂, extracted with H₂O, dried, evaporated, and the residue chromatographed on silica gel (eluent: toluene/ethyl acetate = 5/1), yielding 167 mg (61%) of **15** as a colorless syrup.

¹H NMR (CDCl₃, δ , 500 MHz): -0.18 (s, 3H, SiCH₃), 0.08 (s, 3H, SiCH₃), 0.9 (s, 9H, C(CH₃)₃), 1.29 (t, 3H, CH₂CH₃), 2.21–2.36 (m, 2H, =CHC*H*, C₆H₅C*H*), 2.95 (dd, 1H, $J_{11} = 2.8$, $J_{12} = 13.4$, C₆H₅C*H*), 3.31–3.39 (m, 1H, CHN), 3.61 (d, 1H, $J_{11} = 14.99$, NC*H*C₆H₄), 3.80 (s, 3H, OCH₃), 3.82 (d, 1H, CHCOO), 4.07–4.25 (m, 3H, CHOSi, OCH₂), 4.41–4.52 (dm, 1H, =CCH), 4.82 (dm, 1H, =CH), 5.04 (dm, 1H, =CH), 5.28 (d, 1H, $J_{11} = 14.99$, NC*H*C₆H₄), 5.47–5.65 (m, 1H, CH₂C*H*=), 6.84–6.92 (m, 2H, aromatic H), 7.03–7.10 (m, 2H, aromatic H), 7.21–7.38 (m, 5H, aromatic H) ppm; MS (FAB): m/z = 553 [MH⁺].

$\label{eq:l-Allyl-6} I-Allyl-6(S)-benzyl-5(R)-hydroxy-3-(4-methoxybenzyl)-2-oxo-hexahydropyrimidine-4(S)-carboxylic acid ethylester (16, C_{25}H_{30}N_2O_5)$

120 mg (0.22 mmol) **15** were dissolved in 4 cm³ *THF* and cooled to -10° C; 230 mm³ (0.23 mmol) tetrabutylammonium fluoride dissolved in 1 cm³ *THF* were added. After stirring for 30 min, the reaction mixture was diluted with CH₂Cl₂, extracted with H₂O, dried, the solvent was evaporated, and the residue chromatographed on silica gel (eluent: toluene/ethyl acetate = 2/3) yielding 77 mg (81%) of **16**.

¹H NMR (CDCl, δ , 500 MHz): 1.17 (t, 3H, CH₂CH₃), 2.81–2.86 (m, 2H, CH₂C₆H₅), 3.24–3.56 (m, 2H, CH₂CH=), 3.76–3.82 (m, 1H, CHCO₂), 3.76 (s, 3H, OCH₃), 3.82 (bs, 2H, CH₂C₆H₄), 3.98–3.82 (m, 1H, CHCO₂), 3.76 (s, 3H, OCH₃), 3.82 (bs, 2H, CH₂C₆H₄), 3.98–4.10 (m, 2H, OCH₂), 4.61–4.73 (m, 1H, CHOH), 5.11 (dq, 1H, NCH), 5.18–5.21 (m, 2H, CH₂=), 5.62–5.86 (m, 1H, CH=), 6.82 (d, 2H, aromatic H), 7.14–7.30 (m, 7H, aromatic H) ppm; MS (El): m/z = 438 [M⁺].

I-Allyl-6(S)-benzyl-5(R)-O-t-butyldimethylsilyl-4(S)-hydroxymethyl-3-(4-methoxybenzyl)-2oxo-hexahydropyrimidine (17; C₂₉H₄₂N₂O₄Si)

 $34 \text{ mg} (0.92 \text{ mmol}) \text{ NaBH}_4$ and 30 mg (0.92 mmol) LiCl were dissolved in 3 cm^3 of a 3:2 mixture of ethanol/*THF* and stirred for 30 min at room temperature. Then, 126 mg (0.23 mmol) **15** dissolved in 1 cm^3 of the above mixture were added, and the reaction mixture was stirred for 2 d. Two more equivalents of NaBH₄/LiCl were added, and stirring was continued for another 2 d. After neutralization with acetic acid, the reaction mixture was diluted with CH₂Cl₂, washed with H₂O, dried, the solvent was evaporated, and the residue was chromatographed on silica gel (eluent: toluene/ethyl acetate = $3/2 \rightarrow 1/1$) yielding 64 mg (58%) of **17** as a colorless syrup.

¹H NMR (CDCl₃, δ , 500 MHz): 0.13 (s, 3H, SiCH₃), 0.15 (s, 3H, SiCH₃), 0.92 (s, 9H, C(CH₃)₃), 2.26–2.38 (m, 2H, =CCH, C₆H₅CH), 2.97 (dd, 1H, C₆H₅CH), 3.08 (d, 1H, CHCH₂OH), 3.35–3.40 (dm, 1H, CHN), 3.51–3.58 (m, 1H, CH_{β} OH), 3.80 (s, 3H, OCH₃), 3.91 (dd, 1H, CH_{α}OH), 4.14 (dd, 1H, CHOH), 4.25 (1/2AB, 1H, CHC₆H₄), 4.48 (dm, 1H, =CCH), 4.84 (d, 1H, =CH), 4.99 (1/2AB, 1H, CHC₆H₄), 5.02 (d, 1H, =CH), 5.50–5.60 (m, 1H, CH₂CH=), 6.87–6.92 (m, 2H, aromatic H), 7.12–7.15 (m, 2H, aromatic H), 7.24–7.48 (m, 5H, aromatic H) ppm; MS (FAB): m/z = 511 [MH⁺].

1-Allyl-6(S)-benzyl-5(R)-hydroxy-4(S)-hydroxymethyl-3-(4-methoxybenzyl)-2-oxo-hexahydropyrimidine (**18**; C₂₃H₂₈N₂O₄)

336 mg (0.66 mmol) **17** were dissolved in 10 cm^3 *THF*, and 700 mm^3 (0.7 mmol) tetrabutylammonium fluoride was added at -10° C. The reaction mixture was stirred for 6 h and then diluted with CH₂Cl₂, extracted with H₂O, dried, evaporated, and chromatographed on silica gel (eluent: CH₂Cl₂/ CH₃OH = 95/5) yielding 227 mg (87%) **18** as a syrup.

¹H NMR (CDCl₃, δ , 500 MHz): 2.45 (1/2ABX, 1H, CHC₆H₅), 2.63 (1/2ABX, 1H, CHC₆H₅), 2.95 (dd, 1H, CHOH), 3.10–3.29 (m, 2H, CH₂CH=), 3.41–3.48 (m, 1H, CHCH₂OH), 3.68–3.87 (m, 2H, CH₂OH), 3.76 (s, 3H, OCH₃), 4.01 (bs, 2H, NCH₂), 4.40 (dm, 1H, NCH), 4.97–5.18 (m, 2H, =CH₂), 5.47–5.63 (m, 1H, CH=), 6.82 (d, 2H, aromatic H), 7.10–7.38 (m, 7H aromatic H) ppm; MS (AP+): m/z = 397.3 [MH⁺].

6(S)-Benzyl-5(R)-O-t-butyl-dimethylsilyl-3-(4-methoxybenzyl)-2-oxo-hexahydropyrimidine-4(S)-carboxylic acid butylester (**19a**; C₃₀H₄₄N₂O₅Si)

48 mg (2 mmol) NaH were suspended in 4 cm³ *DMF*; then, 512 mg (1 mmol) **14** dissolved in 2.5 cm³ *DMF* and, after 10 min, 230 mm³ (2 mmol) 1-iodobutane were added at -20° C. The suspension was stirred to 0°C overnight, diluted with CH₂Cl₂, acidified with acetic acid to *pH* 4–5, washed with

 H_2O , dried, evaporated, and chromatographed on silica gel (eluent: toluene/ethyl acetate) = 2/1), yielding 194 mg (34%) of **19a** as colorless syrup.

¹H NMR (CDCl₃, δ , 500 MHz): -0.18 (s, 3H, SiCH₃), 0.02 (s, 3H, SiCH₃), 0.84 (s, 9H, SiC(CH₃)₃), 0.93 (t, 3H, CH₂CH₃), 1.36 (sext, 2H, CH₂CH₂CH₃), 1.61 (quint, 2H, CH₂CH₂CH₂), 2.73 (ABX, 2H, C₆H₅CH₂), 3.60 (dm, 1H, CHCOO), 3.78 (s, 3H, OCH₃), 3.82 (1/2AB, 1H, NCHC₆H₄), 3.88 (d, 1H, CHOSi), 4.09–4.11 (m, 1H, HNCH), 4.13 (q, 2H, OCH₂), 4.38 (bs, 1H, NH), 5.18 (1/2AB, 1H, NCHC₆H₄), 6.81 (dm, 2H, aromatic H), 7.14 (d, 2H, aromatic H), 7.20 (dm, 2H, aromatic H), 7.25–7.29 (m, 1H, aromatic H), 7.33 (t, 2H, aromatic H)pm; MS (FAB): m/z = 541 [MH⁺].

6(S)-Benzyl-5(R)-O-t-butyl-dimethylsilyl-3-(4-methoxybenzyl)-2-oxo-hexahydropyrimidine-4(S)-carboxylic acid 2-(4-methoxyphenyl) ethyl ester (**19b**, C₃₅H₄₆N₂O₆Si)

112 mg (4.68 mmol) NaH were suspended in 4 cm³ *DMF*; then, 1.20 g (2.34 mmol) **14** dissolved in 2.5 cm³ *DMF* and, after 10 min, 707 mm³ (4.68 mmol) 1-(2-chloroethyl)-4-methoxybenzene were added at 0°C. After addition of 200 mg potassium iodide, the reaction mixture heated for 4 d to 65°C. Then was diluted with CH₂Cl₂, acidified with acidic acid to *pH* 4–5, washed with H₂O, dried, evaporated, and chromatographed on silica gel (eluent: toluene/ethyl acetate = 7/3), yielding 458 mg (30%) of **19a** as yellowish syrup and 290 mg recovered starting material.

¹H NMR (CDCl₃, δ , 500 MHz): -0.18 (s, 3H, SiCH₃), 0.01 (s, 3H, SiCH₃), 0.82 (s, 9H, SiC(CH₃)₃), 2.63 (ABX, 2H, C₆H₅CH₂), 2.89 (t, 2H, CH₂C₆H₄), 3.41–3.45 (m, 1H, CHCOO), 3.60 (1/2AB, 1H, NCHC₆H₄), 3.73 (s, 3H, OCH₃), 3.78 (s, 3H, OCH₃), 3.81–3.83 (m, 1H, CHOSi), 3.91–3.93 (m, 1H, NHC*H*), 4.22–4.48 (m, 3H, NH, OCH₂CH₂), 5.14 (1/2AB, 1H, NCH), 6.78–6.87 (m, 4H, aromatic H), 7.03–7.35 (m, 9H, aromatic H) ppm; MS (FAB): m/z = 619 [MH⁺].

6(S)-Benzyl-5(S)-hydroxy-3(4-methoxybenzyl)-2-oxo-hexahydropyrimidine-4(S)-carboxylic acid butyl ester (**20a**, C₂₄H₃₀N₂O₅)

141 mg (0.26 mmol) of **19a** were deprotected using the general procedure. The eluent for chromatography was toluene/ethyl acetate = 1/2.

Yield: 105 mg (95%); ¹H NMR (CDCl₃, δ , 500 MHz): 0.86 (t, 3H, CH₂CH₃), 1.25 (sext, 2H, CH₂), 1.51 (quint, 2H, CH₂), 2.86 (ABX, 2H, C₆H₅CH₂), 3.58 (dt, 1H, CHOH), 3.78 (s, 3H, OCH₃), 3.92–3.95 (m, 1H, NHCH), 3.97 (1/2AB, 1H, NCH), 4.00 (d, 1H, CHCOO), 4.45 (dq, 2H, OCH₂), 5.11 (1/2AB, 1H, NCH), 6.84 (dm, 2H, aromatic H), 7.16–7.33 (m, 7H, aromatic H) ppm; MS (ESI): m/z = 427 [MH⁺].

6(S)-Benzyl-5(R)-hydroxy-3-(4-methoxybenzyl)-2-oxo-hexahydropyrimidine-4(S)-carboxylic acid-2-(4-methoxyphenyl)ethyl ester (**20b**, C₂₉H₃₂N₂O₆)

80 mg (0.13 mmol) of **19b** were deprotected using the general procedure. The eluent for chromatography was toluene/ethyl acetate = 4/1.

Yield: 56 mg (86%); amorphous; m.p.: $172-178^{\circ}$ C; ¹H NMR (CDCl₃, δ , 500 MHz): 2.62–2.87 (m, 4H, C₆H₅CH₂, C₆H₅CH₂), 3.38–3.47 (m, 1H, NHCH), 3.75 (s, 3H, C₆H₄CH₂), 3.78 (s, 3H, C₆H₄CH₂), 3.81–3.84 (m, 1H, CHOH), 3.85 (1/2AB, 1H, NCH), 4.16–4.33 (m, 2H, COCH₂), 4.60 (bs, 1H, NH), 5.08 (1/2AB, 1H, NCH), 6.80–6.85 (m, 4H, aromatic H), 7.04–7.18 (m, 5H, aromatic H), 7.22–7.38 (m, 4H, aromatic H) ppm; MS (FAB): m/z = 504 [MH⁺].

6(S)-Benzyl-5(R)-O-t-butyl-dimethylsilyl-1,3-bis-(4-methoxybenzyl)-2-oxo-hexahydropyrimidine-4(S)-carboxylic acid-2-(4-methoxybenyl)ethyl ester (**21**; C₄₃H₅₄N₂O₇Si)

28 mg (1.16 mmol) NaH were suspended in 1 cm³ *DMF*. At 0°C, 284 mg (0.46 mmol) **19b** dissolved in 1 cm³ *DMF* were added and, after 10 min, a solution of 374 mg (1.16 mmol) tetrabutyl ammonium

Statine-Related Peptidomimetics

bromide, 119 mg (1.16 mmol) NaBr, and 157 mm³ (1.16 mmol) 4-methoxy-benzylchloride in 2 cm³ *DMF*. After 5 h at room temperature the reaction mixture was neutralized with acetic acid, diluted with CH₂Cl₂, washed with H₂O, dried, evaporated, and chromatographed on silica gel (eluent: toluene/ethyl acetate = 4/1), yielding 276 mg (81%) of as a syrup.

¹H NMR (CDCl₃, δ , 500 MHz): -0.38 (s, 3H, SiCH₃), -0.29 (s, 3H, SiCH₃), 0.78 (s, 9H, SiC(CH₃)₃), 2.24 (dd, 1H, C₆H₄CH_α), 2.63 (d, 1H, NCH), 2.86 (dd, 1H, C₆H₄CH_β), 2.89–2.92 (m, 2H, CH₂C₆H₅), 3.10–3.24 (m, 1H, CHOH), 3.51 (d, 1H, NCH), 3.72 (d, 1H, CHCO₂), 3.74 (s, 3H, OCH₃), 3.78 (s, 3H, OCH₃), 3.79 (s, 3H, OCH₃), 3.85–3.90 (m, 1H, CHOH), 4.18–4.36 (m, 2H, CO₂CH₂), 5.10 (d, 1H, NCH), 5.27 (d, 1H, NCH), 6.72–7.35 (m, 17H, aromatic H) ppm; MS (FAB): m/z = 739 [MH⁺].

6(S)-Benzyl-5(R)-hydroxy-1,3-bis-(4-methoxybenzyl)-2-oxo-hexahydropyrimidine-4(S)-carboxylic acid-2-(4-methoxyphenyl)ethyl ester (**22**; $C_{37}H_{40}N_2O_7$)

233 mg (0.32 mmol) **21** were desilylated using the general procedure yielding 170 mg (85%) amorphous **22**.

¹H NMR (CDCl₃, δ , 500 MHz): 2.61–2.74 (m, 2H, C₆H₄CH₂), 2.74–2.81 (m, 2H, C₆H₅CH₂), 3.23–3.28 (m, 1H, CHN), 3.55 (d, 1H, NCH), 3.69–3.72 (m, 1H, CHOH), 3.75 (d, 1H, NCH), 3.78 (s, 3H, OCH₃), 3.79 (s, 3H, OCH₃), 3.79 (s, 3H, OCH₃), 3.80 (d, 1H, CHCO₂), 4.13–4.28 (m, 2H, CO₂CH₂), 5.31 (d, 1H, NCH), 5.35 (d, 1H, NCH), 6.79–7.25 (m, 17H, aromatic H) ppm; MS (FAB): m/z = 625 [MH⁺].

4(R)-((N-t-Butoxycarbonyl)amino)3-(R)-hydroxy-2(S)-(4-methoxy benzylamino)-5-phenyl pentanoic acid ethyl ester (**23**; C₂₆H₃₆N₂O₆)

9.59 g (28.59 mmol) 4(*R*)-((N-*t*-butoxycarbonyl)amino)2(*R*),3(*S*)-epoxy-5-phenyl pentanoic acid ethyl ester [7] were dissolved in 130 cm³ *THF*/ethanol (3/2), and 7.44 cm³ (57.18 cm³) 4-methoxy-benzylamine were added. The reaction mixture was kept at 60°C for 24 h, the solvent was evaporated under reduced pressure, and the residue chromatographed on silica gel (eluent: toluene/ethyl acetate = $5/1 \rightarrow 2/1$), yielding 10.0 g (74%) of **23** as a syrup.

¹H NMR (CDCl₃, δ , 250 MHz): 1.23 (t, 3H, CH₂CH₃), 1.38 (s, 9H, C(CH₃)₃), 2.90 (ABX, 2H, CH₂C₆H₅), 3.28 (d, 1H, CHCO₂), 3.51 (1/2AB, 1H, NHCHC₆H₅), 3.67 (dd, 1H, CHOH), 3.71 (1/2AB, 1H, NHCHC₆H₅), 3.79 (s, 3H, OCH₃), 4.05 (bq, 1H, CHCH₂), 4.32–4.21 (m, 2H OCH₂), 4.79 (bd, 1H, *BOC*NH), 6.85 (d, 2H, aromatic H), 7.12–7.23 (m, 5H, aromatic H), 7.28 (d, 2H, aromatic H) ppm; MS (FAB): m/z = 473 [MH⁺].

4(R)-((N-t-Butoxycarbonyl)amino)-2(S)-(4-methoxybenzylamino)-5-phenyl-pentan-1,3(R)-diol (**24**; C₃₃H₅₄N₂O₄Si₂ · HCl)

571 mg (15.1 mmol) NaBH₄ and 640 mg (15.1 mmol) LiCl were dissolved in 60 cm³ of ethanol/ *THF* = 3/2 and stirred for 1 h at room temperature. Then, 3.57 g (7.55 mmol) **23** dissolved in 10 cm³ of the above solvent mixture were added, and the reaction mixture was stirred for 1 d. After neutralization with acetic acid and dilution with CH₂Cl₂, the reaction mixture was washed with H₂O, dried, and the solvent evaporated. Chromatography on silica gel (eluent: CH₂Cl₂/methanol = 95/5) yielded 2.93 g (86%) foamy **24**.

¹H NMR (CDCl₃, δ , 250 MHz): 1.28 (s, 9H, C(CH₃)₃), 2.61–2.70 (m, 1H, CHC₆H₅), 2.81–2.94 (m, 3H, CHC₆H₅, CHNH), 3.60–3.78 (m, 5H, NHCH₂, CHOH, CH₂OH), 3.79 (s, 3H, OCH₃), 3.95 (dq, 1H, NHCHCH₂), 4.95 (d, 1H, *BOC*NH), 6.80 (d, 2H, aromatic H), 7.08–7.30 (m, 7H, aromatic H) ppm; MS (FAB): m/z = 431 [MH⁺].

4(R)-Amino-2(S)-(4-methoxybenzylamino)-5-phenyl-pentan-1,3(R)-diol (25; C₁₉H₂₅N₂O₃)

2.93 g (6.81 mmol) **24** were dissolved in 20 cm³ CH₂Cl₂ and treated with 11 cm³ (33 mmol) 3*N* HCl (ethyl acetate). After 2 h the solvent was evaporated yielding 2.71 g (99%) crude hygroscopic **25**, which was pure enough to be used directly for further reactions.

¹H NMR (CD₃OD, δ , 250 MHz): 3.08 (ABX, 2H, CH₂C₆H₅), 3.41–3.45 (m, 1H, CHCH₂OH), 3.76–3.81 (m, 1H, CHNH₂), 3.89 (s, 3H, OCH₃), 4.02 (ABX, 2H, CH₂OH), 4.26 (1/2AB, 1H, CHC₆H₄), 4.30 (t, 1H, CHOH), 4.33 (1/2AB, 1H, CHC₆H₄), 7.38–7.49 (m, 9H, aromatic H) ppm.

7(R)-Benzyl-6(S)-O-t-butyldimethylsilyl-5(R)-((O-t-butyldimethylsilyl)-methyl)-4-(4-methoxybenzyl)-1,4-diazepan-2-one (**26**; C₃₃H₅₄N₂O₄Si₂ · HCl)

403 mg (1 mmol) **25** were dissolved in 5 cm³ CH₂Cl₂. 544 mg (8 mmol) imidazole and 900 mg (6 mmol) *TBDMS*Cl dissolved in 2 cm³ CH₂Cl₂ were added, and the reaction mixture was stirred for 12 h at room temperature. After washing with H₂O and drying, 136 mg (2 mmol) imidazole and 158 mm³ (2 mmol) chloroacetylchloride were added. After stirring for 30 min at room temperature the solution was washed with H₂O, dried, evaporated, and chromatographed on silica gel (eluent: toluene/ethyl acetate = 9/1), yielding 515 mg (81%) as a syrup. **26**.

¹H NMR (CDCl₃, δ , 500 MHz): 0.06 (s, 3H, SiCH₃), 0.08 (s, 3H, SiCH₃), 0.11 (s, 3H, SiCH₃), 0.21 (s, 3H, SiCH₃), 0.87 (s, 9H, SiC(CH₃)₃), 0.92 (s, 9H, SiC(CH₃)₃), 2.37–2.48 (1/2ABX, 1H, CHC₆H₅), 2.68 (dt, 1H, CHCH₂), 2.88–2.97 (1/2ABX, 1H, CHC₆H₅), 3.58 (1/2AB, 1H, NHCHC₆H₄), 3.71 (d, 1H, CHO), 3.73–3.81 (m, 3H, NHCHC₆H₄, CH₂O), 3.79 (s, 3H, OCH₃), 3.81 (d, 2H, CH₂O), 4.39–4.50 (m, 1H, NCHCH₂), 6.86 (d, 2H, aromatic H), 7.08–7.30 (m, 7H, aromatic H) ppm; MS (FAB): m/z = 635 [MH⁺].

7(*R*)-Benzyl-6(*S*)-O-t-butyldimethylsilyl-5(*R*)-hydroxymethyl-4-(4-methoxybenzyl)-1,4-diazepan-2-one (**27**; $C_{27}H_{40}N_2O_4Si \cdot HCl$)

394 mg (0.62 mmol) **26** were reacted according to the general procedure using $400 \text{ mm}^3 40\%$ HF for 3d, yielding 220 mg (68%) syrupy **27**.

¹H NMR (CDCl₃, δ , 500 MHz): 0.09 (s, 3H, SiCH₃), 0.21 (s, 3H, SiCH₃), 0.98 (s, 9H, SiC(CH₃)₃), 2.53–2.64 (1/2ABX, 1H, CHC₆H₅), 2.71 (dt, 1H, CHCH₂), 2.79–2.90 (1/2ABX, 1H, CHC₆H₅), 3.52–3.79 (m, 5H, NCH₂C₆H₄, CH₂OH, CHO), 3.79 (s, 3H, OCH₃), 3.86 (s, 2H, COCH₂), 4.85–4.46 (m, 1H, NHCHCH₂), 6.84 (d, 2H aromatic H), 7.11–7.32 (m, 7H, aromatic H), 7.80 (d, 1H, CONH) ppm; MS (FAB): m/z = 522 [MH⁺].

 $7(R)-Benzyl-6(S)-hydroxy-5(R)-hydroxymethyl-4-(4-methoxybenzyl)-1,4-diazepan-2-one (28; C_{21}H_{26}N_2O_4 \cdot HCl)$

200 mg (0.31 mmol) **26** were desilylated with 800 mm³ (16 mmol) 40% HF for 6 d, using the general procedure yielding 92 mg (77%) syrupy **28**.

¹H NMR (CDCl₃, δ , 500 MHz): 2.55–2.61 (m, 1H, CHCH₂), 2.89 (ABX, 2H, CH₂C₆H₅), 3.59– 3.79 (m, 5H, NCH₂C₆H₄, CH₂OH, CHO), 3.79 (s, 3H, OCH₃), 3.89 (s, 2H, COCH₂), 4.22–4.38 (dq, 1H, NHCHCH₂), 6.84 (d, 2H, aromatic H), 7.04–7.25 (m, 8H, aromatic H, CONH) ppm; MS (FAB): m/z = 407 [MH⁺].

$\label{eq:alpha} \begin{array}{l} 4(R)\mbox{-}Benzyl\mbox{-}5(S)\mbox{-}O\mbox{-}t\mbox{-}butyldimethylsilyl\mbox{-}6(R)\mbox{-}((O\mbox{-}t\mbox{-}butyldimethylsilyl)\mbox{-}methyl)\mbox{-}1\mbox{-}(4\mbox{-}methoxybenzyl)\mbox{-}tetrahydropyrimidin\mbox{-}2\mbox{-}one\mbox{-}(\mathbf{29};\mbox{C}_{32}\mbox{H}_{52}\mbox{N}_{2}\mbox{O}_{4}\mbox{Si}_{2}) \end{array}$

403 mg (1 mmol) **25** were dissolved in $3 \text{ cm}^3 \text{ CH}_2\text{Cl}_2$, and 272 mg (4 mmol) imidazole and 452 mg (3 mmol) *TBDMS*Cl dissolved in $3 \text{ cm}^3 \text{ CH}_2\text{Cl}_2$ were added; the reaction mixture was stirred for 1 d.

Statine-Related Peptidomimetics

After washing with water and drying, 256 mg (1 mmol) 1,1'-carbonyldiimidazole (*Staab* reagent) were added to the filtrate, and stirring was continued for 30 min. Evaporation of the solvent and chromatograpy of the residue on silica gel (eluent: toluene/ethyl acetate = 3/1) yielded 470 mg (80%) syrupy **29**.

¹H NMR (CDCl₃, δ , 500 MHz): -0.2 (s, 3H, SiCH₃), 0.01 (s, 9H, 3SiCH₃), 0.81 (s, 9H, SiC(CH₃)₃), 0.82 (s, 9H, SiC(CH₃)₃), 2.79 (d, 2H, CH₂C₆H₅), 3.21–3.28 (m, 1H, CHCH₂), 3.40 (1/2ABX, 1H, CHOSi), 3.60 (1/2ABX, 1H, CHOSi), 3.72–3.80 (m, 1H, CHOSi), 3.79 (s, 3H, OCH₃), 4.08–4.12 (m, 1H, NHCH), 4.20 (1/2AB, 1H, NCHC₆H₄), 4.29 (bs, 1H, NH), 4.87 (1/2AB, 1H, NCHC₆H₄), 6.81 (d, 2H, aromatic H), 7.18–7.38 (m, 7H, aromatic H) ppm; MS (FAB): m/z = 585 [MH⁺].

$\label{eq:alpha} \begin{array}{l} 4(R) \mbox{-}Benzyl \mbox{-}5(S) \mbox{-}O \mbox{-}t \mbox{-}butyl \mbox{dimethylsilyl-}6(R) \mbox{-}hydroxymethyl \mbox{-}1 \mbox{-}(4 \mbox{-}methoxybenzyl) \mbox{-}t \mbox{trahydropyrimidin-}2 \mbox{-}one \mbox{(}\mathbf{30}; \mbox{C}_{28} \mbox{H}_{38} \mbox{N}_2 \mbox{O}_4 \mbox{Si}) \end{array}$

100 mg (0.17 mmol) **29** were reacted with 200 mm³ 40% HF for 1 d following the general procedure yielding 77 mg (96%) **30**.

¹H NMR (CDCl₃, δ , 500 MHz): -0.2 (s, 3H, SiCH₃), 0.01 (s, 3H, SiCH₃), 0.84 (s, 9H, SiC(CH₃)₃), 2.79 (ABX, 2H, CH₂C₆H₅), 3.22 (q, 1H, CHCH₂OH), 3.61 (d, 2H, CH₂OH), 3.80 (s, 3H, OCH₃), 3.77–3.82 (m, 1H, NHC*H*), 4.15 (1/2AB, 1H, NCHC₆H₄), 4.64 (1/2AB, 1H, NCHC₆H₄), 4.82 (bs, 1H, CONH), 6.82 (d, 2H, aromatic H), 7.15–7.32 (m, 7H, aromatic H) ppm; MS (FAB): m/z = 363 [MH⁺].

 $\label{eq:alpha} \begin{array}{l} 4(R) \mbox{-}Benzyl \mbox{-}5(S) \mbox{-}hydroxy \mbox{-}6(R) \mbox{-}hydroxymethyl \mbox{-}1 \mbox{-}(4\mbox{-}methoxybenzyl) \mbox{-}tetrahydropyrimidin \mbox{-}2\mbox{-}one \mbox{-}(\mathbf{31};\ \mathbf{C}_{20}\mathbf{H}_{24}\mathbf{N}_{2}\mathbf{O}_{4}) \end{array}$

170 mg (0.036 mmol) **30** were desilylated with 720 mm³ (14.4 mmol) 40% HF following the general procedure yielding 101 mg (79%) syrupy **31**.

¹H NMR (CDCl₃, δ , 500 MHz): 2.82 (ABX, 2H, CH₂C₆H₅), 3.37 (t, 1H, CHCH₂OH), 3.51 (d, 2H, CH₂OH), 3.71–3.88 (m, 2H, CHOH, NHCH), 3.77 (s, 3H, OCH₃), 4.18 (1/2AB, 1H, NCHC₆H₄), 4.70 (bs, 1H, CONH), 4.82 (1/2AB, 1H, NCHC₆H₄), 6.82 (d, 2H, aromatic H), 7.15–7.32 (m, 7H, aromatic H) ppm; MS (FAB): m/z = 357 [MH⁺].

3(R)-(7(R)-Benzyl-6(S)-O-t-butyldimethylsilyl-4-(4-methoxybenzyl)-2-oxo-1,4-diazepan-5-yl)-acrylic acid ethylester (**32**; C₃₁H₄₄N₂O₅Si · HCl)

352 mg (0.73 mmol) **27** were dissolved in 2 cm³ dry *DMSO*, 307 mm³ (2.19 mmol) triethylamine and 349 mg (2.19 mmol) pyridinium sulfate were added, and the solution was stirred for 15 min at room temperature. Then, 763 mg (2.19 mmol) carboxyethyl triphenylphosphorane were added, and the reaction was worked up after 1 h by diluting with CH_2Cl_2 , washing with H_2O , drying, and evaporating the solvent. The residue was chromatographed on silica gel (eluent: toluene/ethyl acetate = 9/1) yielding 267 mg (62%) syrupy **32**.

¹H NMR (CDCl₃, δ , 500 MHz): 0.00 (s, 3H, SiCH₃), 0.07 (s, 3H, SiCH₃), 0.18 (s, 9H, SiC(CH₃)₃), 1.29 (t, 3H, CH₃CH₃), 2.54 (1/2ABX, 1H, CHC₆H₅), 2.82 (1/2ABX, 1H, CHC₆H₅), 3.21 (dd, 1H, CHCH=), 3.43 (1/2AB, 1H, NCHC₆H₄), 3.68 (dd, 1H, CHO), 3.72 (1/2AB, 1H, NCHC₆H₄), 3.80 (s, 3H, OCH₃), 3.89 (s, 2H, COCH₂), 4.22 (q, 2H, CH₂CH₃), 4.30–4.44 (m, 1H, NHCHCH₂), 5.88 (d, 1H, =CH), 6.67 (dd, 1H, CH=), 6.84 (d, 2H, aromatic H), 7.08–7.30 (m, 7H, aromatic H), 7.68 (d, 1H, CONH) ppm; MS (FAB): m/z = 589 [MH⁺].

3(R)-(7(R)-Benzyl-6(S)-hydroxy-4-(4-methoxybenzyl)-2-oxo-1,4-diazepan-5-yl)-acrylic acid ethylester (33; C₂₅H₃₀N₂O₅·HCl)

84 mg (0.14 mmol) **32** were dissolved in 4 cm³ *THF*, and 150 mm³ (0.15 mmol) tetrabutylammonium fluoride (1*M* in *THF*) were added at 15°C. After 2h the reaction was quenched with 0.4 cm^3

methanol, the solvent evaporated, and the residue chromatographed on silica gel (eluent: toluene/ ethyl acetate = $2/1 \rightarrow 1/1$), yielding 50 mg (79%) syrupy **33**.

¹H NMR (CDCl₃, δ , 500 MHz): 1.28 (t, 3H, CH₂CH₃), 2.87 (d, 2H, CH₂C₆H₅), 3.11 (dd, 1H, CHCH=), 3.43 (1/2AB, 1H, NCHC₆H₄), 3.62 (dd, 1H, CHO), 3.62 (1/2AB, 1H, NCHC₆H₄), 3.79 (s, 3H, OCH₃), 3.89 (s, 2H, COCH₂), 4.20 (q, 2H, CH₂CH₃), 4.26 (dq, 1H, NHCHCH₂), 5.91 (d, 1H, =CH), 6.77 (dd, 1H, CH=), 7.02 (d, 1H, CONH), 7.16 (d, 2H, aromatic H), 7.19–7.35 (m, 7H, aromatic H) ppm; MS (FAB): m/z = 475 [MH⁺].

$\begin{array}{l} 4(R) \mbox{-}Benzyl \mbox{-}5(S) \mbox{-}O \mbox{-}t \mbox{-}butyl \mbox{dimethyl silyl-}6(R) \mbox{-}((O \mbox{-}t \mbox{-}butyl \mbox{dimethyl silyl}) \mbox{-}methyl) \mbox{-}1, \mbox{3-}bis \mbox{-}(4 \mbox{-}methoxyb \mbox{enzyl}) \mbox{-}tetrahyd \mbox{ropyrimidin-}2 \mbox{-}one \mbox{(34; $C_{40}H_{60}N_2O_5Si_2$)} \end{array}$

227 mg (9.48 mmol) NaH were dispersed in 20 cm³ *DMSO* at 0°C. Then 2.77 g (4.74 mmol) **26** were added, and the reaction mixture was stirred for 15 min at 0°C. A solution of 3.056 g (9.48 mmol) tetrabutylammonium bromide, 975 mg (9.48 mmol) NaBr, and 1.29 cm^3 (9.48 mmol) 4-methoxybenzyl chloride dissolved in 20 cm³ *DMSO* was added. After stirring for 12 h at 4°C the reaction mixture was acidified to *pH* 4–5 with acetic acid, diluted with CH₂Cl₂, washed with H₂O, the organic solvent was evaporated, and the residue was chromatographed on silica gel (eluent: toluene/ethyl acetate = 4/1) yielding 2.82 g (70%) syrupy **34**.

¹H NMR (CDCl₃, δ , 500 MHz): -0.31 (s, 3H, SiCH₃), -0.18 (s, 3H, SiCH₃), 0.10 (s, 3H, SiCH₃), 0.20 (s, 3H, SiCH₃), 0.81 (s, 9H, SiC(CH₃)₃), 0.95 (s, 9H, SiC(CH₃)₃), 2.41 (1/2ABX, 1H, CHC₆H₅), 2.57 (1/2AB, 1H, NCHC₆H₄), 2.88 (1/2ABX, 1H, CHC₆H₅), 3.12–3.18 (m, 1H, NCHCH₂), 3.51 (1/2ABX, 1H, CHOSi), 3.76 (s, 3H, OCH₃), 3.81 (s, 3H, OCH₃), 3.81–3.84 (m, 1H, CHOSi), 3.91 (1/2ABX, 1H, CHOSi), 5.10 (1/2AB, 1H, NCHC₆H₄), 5.60 (1/2AB, 1H, NCHC₆H₄), 7.16 (d, 2H aromatic H), 7.26–7.38 (m, 7H, aromatic H) ppm; MS (FAB): $m/z = [MH^+]$.

4(R)-Benzyl-5(S)-O-t-butyldimethylsilyl-6(R)-hydroxymethyl)-1,3-bis-(4-methoxybenzyl)-tetrahydropyrimidin-2-one (**35**; C₃₄H₄₆N₂O₅Si)

2.34 g (3.32 mmol) **34** were reacted with 1 cm³ 40% HF for 4 d according to the general procedure yielding 1.12 g (56%) syrupy **35** after chromatography on silica gel (eluent: toluene/ethyl acetate = $6/4 \rightarrow 8/1$).

¹H NMR (CDCl₃, δ , 500 MHz): -0.31 (s, 3H, SiCH₃), -0.18 (s, 3H, SiCH₃), 0.81 (s, 9H, SiC(CH₃)₃), 1.63 (1/2ABX, 1H, CHC₆H₅), 2.32 (1/2ABX, 1H, CHC₆H₅), 2.63 (1/2AB, 1H, NCHC₆H₄), 2.91 (1/2ABX, 1H, CHOH), 3.04 (d, 1H, CHCH₂), 3.10-3.19 (m, 1H, CHOSi), 3.49 (1/2ABX, 1H, CHOH), 3.75 (s, 3H, OCH₃), 3.79 (s, 3H, OCH₃), 3.92 (dt, 1H, NCHCH₂), 4.22 (1/2AB, 1H, NCHC₆H₄), 5.11 (1/2AB, 1H, NCHC₆H₄), 5.18 (1/2AB, 1H, NCHC₆H₄), 6.75-6.68 (m, 4H, aromatic H), 6.90 (d, 2H, aromatic H), 7.08-7.15 (m, 2H, aromatic H), 7.22-7.43 (m, 5H, aromatic H) ppm; MS (FAB): $m/z = 591 = [MH^+]$.

3(R)-(6(R)-Benzyl-5(S)-O-t-butyldimethylsilyl-1,3-bis-(4-methoxybenzyl)-2-oxo-hexahydropyrimidin-4-yl)-acrylic acid ethylester (**36**; C₃₈H₅₀N₂O₆Si)

200 mg (0.34 mmol) **35** were dissolved in 3 cm³ CH₂Cl₂. 173 mg (0.408 mmol) *Dess-Martin* reagent and 53 mm³ (0.68 mmol) pyridine were added, and after 1 h 284 mg (0.82 mmol) carboxyethyl triphenylphosphorane were added together with 4 cm³ toluene. The reaction mixture was heated at 60°C for 1 h; then the solvent was evaporated and the residue chromatographed on silica gel (eluent: toluene/methanol = 95/5) to yield 172.5 mg (77%) syrupy **36**.

¹H NMR (CDCl₃, δ , 500 MHz): -0.31 (s, 3H, SiCH₃), -0.18 (s, 3H, SiCH₃), 0.79 (s, 9H, SiC(CH₃)₃), 1.32 (t, 3H, CH₂CH₃), 2.20 (1/2ABX, 1H, CHC₆H₅), 2.58 (1/2AB, 1H, NCHC₆H₄), 2.87 (1/2ABX, 1H, CHC₆H₅), 3.12–3.20 (m, 1H, NCHCH₂), 3.41 (dd, 1H, CHOSi), 3.61 (t, 1H, CHCH=),

3.72 (1/2AB, 1H, NCHC₆H₄), 3.78 (s, 3H, OCH₃), 3.81 (s, 3H, OCH₃), 4.26 (dq, 2H, OCH₂), 5.10 (1/2AB, 1H, NCHC₆H₄), 5.95 (1/2AB, 1H, NCHC₆H₄), 5.94 (d, 1H, =CH), 6.63 (dd, 1H, =CH), 6.72–6.84 (m, 4H, aromatic H), 6.89 (d, 2H, aromatic H), 7.01–7.10 (m, 2H, aromatic H), 7.22–7.40 (m, 5H, aromatic H) ppm; MS (FAB): m/z = 659 [MH⁺].

3(R)-(6(R)-Benzyl-5(S)-hydroxy-1,3-bis-(4-methoxybenzyl)-2-oxo-hexahydropyrimidin-4-yl)-acrylic acid ethylester (**37**; C₃₂H₃₆N₂O₆)

120 mg (0.18 mmol) **36** were desilylated with 600 mm³ 40% HF according to the general procedure yielding 91.2 mg (93%) syrupy **37** after chromatography on silica gel (eluent: toluene/ethyl acetate = 4/1).

¹H NMR (CDCl₃, δ , 250 MHz): 1.31 (t, 3H, CH₂CH₃), 2.77 (ABX, 2H, CH₂C₆H₅), 3.23 (dt, 1H, NCHCH₂), 3.42 (1/2AB, 1H, NCHC₆H₄), 3.41–3.52 (m, 1H, CHCH=), 3.67 (1/2AB, 1H, NCHC₆H₄), 3.76–3.82 (m, 1H, CHOH), 3.79 (s, 6H, 2OCH₃), 4.21 (q, 2H, OCH₂), 5.25 (1/2AB, 1H, NCHC₆H₄), 5.42 (1/2AB, 1H, NCHC₆H₄), 5.96 (dd, 1H, =CH), 6.58 (dd, 1H, CH=), 6.75–6.89 (m, 4H, aromatic H), 7.00–7.05 (m, 4H, aromatic H), 7.20–7.33 (m, 5H, aromatic H) ppm; MS (FAB): $m/z = [MH^+].$

3(R)-(6(R)-Benzyl-5(S)-hydroxy-1,3-bis-(4-methoxybenzyl)-2-oxo-hexahydropyrimidin-4-yl)-oxiran-carboxylic acid ethyl ester (**38**; C₃₂H₃₆N₂O₇)

100 mg (0.18 mmol) **37**, 56 mm³ benzonitrile, 8 mg (0.08 mmol) KHCO₃, and 110 mm³ (0.36 mmol) 30% H_2O_2 were dissolved in 2 cm³ ethanol and stirred for 4 d. Then, 1 cm³ 40% NaHSO₃ was added, and the reaction mixture was taken up in CH₂Cl₂, washed, dried, evaporated, and chromatographed on silica gel (eluent: toluene/ethyl acetate = 3/1) to yield 74 mg (72%) **38**.

¹H NMR (CDCl₃, δ , 500 MHz): 1.32 (t, 3H, CH₂CH₃), 2.69 (1/2ABX, 1H, CHC₆H₅), 2.92 (1/2ABX, 1H, CHC₆H₅), 2.96 (d, 1H, CHCHO), 3.08 (dd, 1H, CHOCO₂), 3.20 (d, 1H, CHOCH), 3.31 (1/2AB, 1H, NCHC₆H₄), 3.46–3.53 (m, NCHCH₂), 3.79 (s, 6H, 2OCH₃), 3.76–3.82 (m, 1H, CHOH), 4.08 (1/2AB, 1H, NCHC₆H₄), 4.20–4.29 (q, 2H, OCH₂), 5.18 (1/2AB, 1H, NCHC₆H₄), 5.23 (1/2AB, 1H, NCHC₆H₄), 6.81–6.91 (m, 4H, aromatic H), 7.01 (m, 2H, aromatic H), 7.10–7.19 (m, 3H, aromatic H), 7.22–7.31 (m, 4H, aromatic H) ppm; MS (FAB): m/z = 561 [MH⁺].

5(S)-(Hydroxy-1,3-bis-(4-methoxybenzyl)-2-oxo-hexahydro-pyrimidin-4-yl)-acrylic acid (**39**; $C_{30}H_{32}N_2O_6$)

212 mg (0.39 mmol) **37** were dissolved in 1.5 cm³ *THF*, 10 mg (0.429 mmol) LiOH and 0.3 cm³ H₂O were added, and the reaction mixture was stirred for 1 d at room temperature. After acidification with 1 *N* HCl the solution was extracted with CH₂Cl₂. Evaporation of the organic solvent yielded 191 mg (95%) foamy **39**.

¹H NMR (CDCl₃, δ , 500 MHz): 2.41 (1/2ABx, 1H, CHC₆H₅), 2.81 (1/2ABX, 1H, CHC₆H₅), 3.01 (1/2AB, 1H, NCHC₆H₄), 3.41 (dd, 1H, NCHCH₂), 3.61–3.80 (m, 2H, CHCH=, CHOH), 3.79 (s, 6H, 2OCH₃), 3.90 (1/2AB, 1H, NCHC₆H₄), 4.97 (1/2AB, 1H, NCHC₆H₄), 5.22 (1/2AB, 1H, NCHC₆H₄), 5.96 (dd, 1H, =CH), 6.48 (dd, 1H, CH=), 6.80–7.38 (m, 13H, aromatic H) ppm; MS (FAB): m/z = 517 [MH⁺].

Acknowledgements

We wish to thank *Gerhard Schulz* and *Ewald Haidl* for the recording and the support in interpreting of the ¹H NMR spectra and *Philipp Lehr* for critical reading of the manuscript.

References

- [1] von der Helm K (1996) Biol Chem 377: 765
- [2] a) Vella S (1995) J Acquir Immune Defic Syndr Hum Retrovirol [Suppl 1] 10: 58; b) Vella S (1995)
 AIDS [Suppl 2] 9: 21
- [3] Drugs of the Future (1998) 23: 438, 459
- [4] a) De Lucca GV, Lam PYS (1997) Drugs of the Future 23: 987; b) Wilkerson WW, Dax S, Cheatham WW (1997) J Med Chem 40: 4079; c) De Lucca G, Liang J, De Lucca I (1999) J Med Chem 42: 135
- [5] Lehr P, Billich A, Charpiot B, Ettmayer P, Scholz D, Rosenwirth B, Gstach H (1996) J Med Chem 39: 2060
- [6] a) Debouck C (1992) AIDS Res Hum Retroviruses 8: 153; b) Hui KY, Hermann RB, Mannetta JV, Gygi T, Angleton EL (1993) FEBS Lett 327: 355
- [7] Scholz D, Billich A, Charpiot B, Ettmayer P, Lehr P, Rosenwirth B, Schreiner E, Gstach H (1994), J Med Chem **37**: 3079

Received February 12, 1999. Accepted May 4, 1999

1300